SARS-CoV-2: um ensaio de semiobiônica computacional

Autores

  • Carlos Eduardo Pires de Camargo Pontifícia Universidade Católica de São Paulo, Faculdade de Ciências Exatas e Tecnologia, Programa de Pós-Graduação em Tecnologias da Inteligência e Design Digital, São Paulo, São Paulo, Brasil.

DOI:

https://doi.org/10.23925/1984-3585.2020i22p161-177

Palavras-chave:

Biônica, Biossemiótica, SARS-CoV-2, Vida artificial

Resumo

Apresenta-se neste ensaio o conceito de “semiobiônica computacional”, derivado da biônica clássica e que utiliza a semiótica como campo mediador entre o mundo biológico e os sistemas computacionais bioinspirados. O foco é o desenvolvimento de modelos que possam servir à criação de dispositivos de engenharia ou técnicas de simulação em contexto de software. Utilizando-se o ciclo do SARS-CoV-2, apresentado resumidamente, propõe-se um modelo semiobiônico parcial capaz de expressar as relações sígnicas e o fluxo de informação subjacente ao comportamento viral. Dois diagramas são gerados: diagrama semiótico e diagrama do autômato finito análogo ao fenômeno. Ao final, segue reflexão a respeito das possibilidades desta abordagem para o avanço no conhecimento sobre o SARS-CoV-2, bem como para outros agentes biológicos.

Downloads

Não há dados estatísticos.

Metrics

Carregando Métricas ...

Biografia do Autor

Carlos Eduardo Pires de Camargo, Pontifícia Universidade Católica de São Paulo, Faculdade de Ciências Exatas e Tecnologia, Programa de Pós-Graduação em Tecnologias da Inteligência e Design Digital, São Paulo, São Paulo, Brasil.

Doutor e Mestre em Tecnologias da Inteligência e Design Digital (PUC-SP). Graduado em Engenharia Mecânica (FEI) e pós-graduado em Administração de Marketing (ESPM).

Referências

CAMARGO, Carlos Eduardo Pires. Método de transposição semiótica para modelagem computacional biomimética. Lisboa: Novas Edições Acadêmicas, 2015.

CAMARGO, Carlos Eduardo Pires. Semiótica da vida artificial. 2018. Tese (Doutorado em Tecnologia da Inteligência e Design Digital) - Programa de Estudos Pós-Graduados em Tecnologia da Inteligência e Design Digital, Pontifícia Universidade Católica de São Paulo, São Paulo, 2018.

FISCHETTI, M. et al. A visual guide to the SARS-CoV-2 Coronavirus: what scientists know about the inner workings of pathogen that infected the world. Scientific American, 323, 1, 32-37, 2020.

GLAUNSINGER, B. Coronaviruses 101: focus on molecular virology. Palestra em vídeo disponível em: . Acesso em: 30 mar. 2020.

HOFFMEYER, Jasper. Biosemiotics: an examination into the signs of life and the life of signs. Chicago: University of Scranton Press, 2008.

HOLCOMBE, W. M. L. Algebraic automata theory. Cambridge: Cambridge University Press, 1982.

KATSALIAK, K., MUSTAFEE, N. Applications of simulation within the Healthcare Context. In: Mustafee N. (ed.). Operational research for emergency planning in healthcare, v. 2. The or Essentials series. London: Palgrave Macmillan, 2016.

KULL, K.; EMMECHE, C.; HOFFMEYER, J. Why biosemiotics? An introduction to our view on the biology of life itself. In: Towards a semiotic biology: life is the action of signs. London: Imperial College Press, 2011.

NÖTH, Winfried. Handbook of semiotics. Bloomington: Indiana University Press, 1995.

NÖTH, Winfried. Panorama da semiótica: de Platão a Peirce. São Paulo: Annablume, 1998.

NÖTH, Winfried. Charles S. Peirce’s theory of information: a theory of the growth of symbols and of knowledge. Cybernetics and Human Knowing, v. 19, n. 1-2, p. 137-161, 2012.

QUEIROZ, João. Semiose segundo Peirce. São Paulo: EDUC/Fapesp, 2004.

RHODES, J. Applications of automata theory and algebra: via the mathematical theory of complexity to biology, psychology, philosophy, and games. New Jersey: World Scientific, 2010.

SANTAELLA, Lucia. A teoria geral dos signos: como as linguagens significam as coisas. São Paulo: Cengage Learning 2000.

SHANNON, C.; Weaver, W. The mathematical theory of communication. Urbana: University of Illinois Press, 1949.

STEINER, P. Peirce and artificial intelligence: historical hetirage and (new) theoretical ataques. In: Müller, V. (ed.). Philosophy and theory of artificial intelligence. Berlin: Springer, 2013, p. 265-276.

SRIVASTAVA, H. M. et al. An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola vírus. Chaos, Solitons & Fractals, v. 140, 2020.

VINCENT, J. F. et al. Biomimetics: its practice and theory. J. R. Soc. Interface, 3:471-482. London, 2006.

Downloads

Publicado

2021-09-23