A simple morphing animation Technique in GeoGebra using Convex Linear Combinations

Authors

DOI:

https://doi.org/10.23925/2237-9657.2025.v14i1p257-266

Keywords:

Animation, GeoGebra, Convex Linear Combination, Morphing

Abstract

Among the many features of GeoGebra, the ability to create animations stands out. In this paper, we present, through a few examples, how the concept of convex linear combination serves as a simple and powerful technique for generating morphing animations, where objects gradually transform from one configuration to another. Convex linear combinations are a practical and visually appealing application of linear combinations, notable for their versatility and mathematical elegance, making them useful in various fields and valuable for teaching abstract concepts in a tangible way.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Humberto José Bortolossi, Universidade Federal Fluminense

Universidade Federal Fluminense

Luciana Prado Mouta Pena, Universidade Federal Fluminense

Universidade Federal Fluminense

References

ABU, N. A.; HASSAN, M. D.; SAHIB, S. Mathematical animations: the art of teaching. In: Frontiers In Education Conference (FIE), 31., Reno, NV. Anais [...]. Reno: IEEE, p. S1C-10–S1C-15, 2001.

ALTIPARMAK, K. Impact of computer animations in cognitive learning: differentiation. International Journal of Mathematical Education in Science and Technology, v. 45, n. 8, p. 1146-1166, Nov. 2014.

AMUNDSEN, M. L. J. Is animation in education effective? A look into educators’ perspective and Human-Computer Interaction. 2024. Dissertação (Mestrado em Informática) – University of Oslo, Department of Informatics, Faculty of Mathematics and Natural Sciences, Oslo, 2024.

ARI, E. F. et al. The influence of animation media in understanding fractions in mathematics. In: International Conference on Science, Education and Technology 2024, Semarang: Universitas Negeri Semarang, Semarang. Anais, p. 21-27, 2024.

BARBOSA, S. M. O software GeoGebra e as possibilidades do trabalho com animação. Revista do Instituto GeoGebra de São Paulo, São Paulo, v. 2, n. 1, p. 22-32, 2013.

BASNIAK, M. I. A construção de cenários animados no GeoGebra e o ensino e a aprendizagem de funções. Revista do Instituto GeoGebra de São Paulo, São Paulo, v. 9, n. 1, p. 43-58, 2020.

BORTOLOSSI, H. J. Cálculo diferencial a várias variáveis: uma introdução à teoria de otimização. 618 p., Rio de Janeiro: Ed. PUC-Rio; São Paulo: Loyola, 2002.

BORTOLOSSI, H. J.; FIGUEIREDO, J. O. de. Coordenadas baricêntricas: uma introdução com ênfase na geometria moderna do triângulo. 1. ed. Rio de Janeiro: Sociedade Brasileira de Matemática, 2017. Disponível em: <http://www.professores.imuff.mat.br/hjbortol/arquivo/2017.1/cms/cms-coordenadas-baricentricas.pdf>. Acesso em: 3 set. 2024.

HÖFFLER, T.N.; LEUTNER, D. Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, v. 17, n. 6, p. 722-738, 2007.

JANCHESKI, M. GeoGebra animations, simulations and computer games in teaching and learning physics. In: 13th International Technology, Education and Development Conference (INTED). Proceedings [...]. Valencia: IATED, 2019. p. 7613-7623, 2019.

LOWE, R., SCHNOTZ, W. Learning with animation: Research implications for design. Cambridge: Cambridge University Press, 2008.

MOLINARI, J. R. A.; RETSLAFF, F. M. de S. Curvas de Bézier no software GeoGebra e suas aplicações. Revista do Instituto GeoGebra Internacional de São Paulo, v. 8, n. 2, p. 026–043, 2019. Disponível em: https://revistas.pucsp.br/index.php/IGISP/article/view/41161. Acesso em: 27 set. 2024.

PRAUTZSCH, H.; BOEHM, W.; PALUSZNY, M. Bézier and B-Spline Techniques. Berlin; Heidelberg: Springer-Verlag, 2002.

TVERSKY, B.; MORRISON, J. B.; BETRANCOURT, M. Animation: can it facilitate? International Journal of Human-Computer Studies, v. 57, p. 247-262, 2002. DOI:10.1006/ijhc.1017. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1071581902910177>. Acesso em: 31 mar. 2025.

VALDEZ, A.; TRUJILLO, K.; WIBURG, K. Math Snacks: Using Animations and Games to Fill the Gaps in Mathematics. Journal of Curriculum and Teaching, v. 2, n. 2, p. 154-161, 2013.

Published

2025-06-08

How to Cite

Bortolossi, H. J., & Pena, L. P. M. (2025). A simple morphing animation Technique in GeoGebra using Convex Linear Combinations. Journal of the GeoGebra International Institute of São Paulo, 14(1), 257–266. https://doi.org/10.23925/2237-9657.2025.v14i1p257-266

Issue

Section

Proposals for Action