Análise socioambiental dos sistemas de integração

quais são seus benefícios, desafios e oportunidades?

Autores/as

  • Liliane Moreira Nery Universidade Estadual Paulista
  • Gabriela Gomes Universidade Estadual Paulista
  • Nícholas de Paula Nicomedes Universidade Estadual Paulista
  • Darllan Collins da Cunha e Silva Universidade Estadual Paulista
  • Débora Zumkeller Sabonaro Universidade Federal de Alfenas

DOI:

https://doi.org/10.23925/2179-3565.2024v15i2p177-192

Palabras clave:

Sistemas Integrados, Agricultura sustentável, Propriedade rural, Conservação do solo

Resumen

As preocupações com a sustentabilidade dos sistemas agropecuários evidenciam a necessidade de novas abordagens para a produção agrícola. Visto isso, esse estudo, com base na revisão da literatura, avaliou os benefícios socioambientais proporcionados pelos sistemas integrados (SI), os desafios e oportunidades na difusão dessa tecnologia. As melhorias ambientais proporcionadas pelos SI já são bem descritas, porém, pouco se sabe sobre seus efeitos na propriedade rural e as dificuldades na sua implementação. A implementação dos sistemas de conservação, quando comparados a um sistema convencional de produção, reduzem a perturbação do solo, aumentam a cobertura da matéria orgânica e apresentam menor potencial de erosão e compactação do solo. Além disso, sistemas integrados que incluem componentes forrageiros e ou/ florestais, melhoram as propriedades do solo e tem potencial para reter carbono no solo e na biomassa, reduzindo emissões de gases de efeito estufa. No entanto, o alto custo inicial e a baixa escolaridade entre os pequenos produtores podem ser barreiras para a adoção desses sistemas. Percepções negativas do mercado e incentivos governamentais também podem favorecer os sistemas tradicionais. Reconhecer os benefícios de longo prazo e implementar pagamentos por serviços ambientais podem incentivar a adoção desses sistemas. No entanto, é necessário um melhor entendimento das implicações de poluição dos sistemas de integração com sistemas convencionais de produção. Portanto, a capacidade da integração em melhorar os atributos relacionados à qualidade do solo contribui para a recuperação de pastagens degradadas, aumento da produtividade e sequestro de C. Conclui-se ainda, que a Integração Lavoura-Pecuária-Floresta (ILPF) pode ser vista como uma tecnologia inovadora dentro de um cenário de regime agrícola já estabelecido, proporcionando uma nova conduta agrícola.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Aguilar-Gómez, C. R.; Arteaga-Reyes, T. T.; Gómez-Demetrio, W.; Ávila-Akerber, V. D.; Pérez-Campuzano, E. (2020). Differentiated payments for environmental services: A review of the literature. Ecosystem Services, v. 44, p. 10113. doi: https://doi.org/10.1016/j.ecoser.2020.101131.

Alves, B. J. R.; Madari, B. E.; Boddey, R. (2017). Integrated crop–livestock–forestry systems: prospects for a sustainable agricultural intensification. Nutrient Cycling in Agroecosystems, v. 108, p. 1–4. doi: https://doi.org/10.1007/s10705-017-9851-0.

Alves, L. A.; Denardin, L. G. O.; Martins, A. P.; Bayer, C.; Veloso, M. G.; Breem, C.; Carvalho, P. C. F.; Machado, D. R.; Tiecher, T. (2020). The effect of crop rotation and sheep grazing management on plant production and soil C and N stocks in a long-term integrated crop-livestock system in Southern Brazil. Soil & Tillage Research, v. 203, p. 104678. doi: https://doi.org/10.1016/j.still.2020.104678.

Ambus, J. V.; Reichert, J. M.; Gubiani, P. I.; Carvalho, P. C. F. (2018). Changes in composition and functional soil properties in long-term no-till integrated crop-livestock system. Geoderma, v. 330, p. 232–243. doi: https://doi.org/10.1016/j.geoderma.2018.06.005.

Assad, E. D.; Martin, S. C.; Cordeiro, L. A. M.; Balbino, A. E. (2019). Sequestro de C e mitigação de emissões de gases de efeito estufa pela adoção de sistemas integrados. In: Bungenstab, D. J.; Almeida, R. G.; Laura, V. A.; Balbino, L. C.; Ferreira, A. D. (eds.). (2019). ILPF: inovação com integração de lavoura, pecuária e floresta, Brasília: Embrapa. p. 155-167.

Assis, P. C. R.; Stone, L. F.; Medeiros, J. C.; Madari, B. E.; Oliveira, J. M.; Wruck, F. J. (2015). Atributos físicos do solo em sistemas de integração lavoura-pecuária-floresta. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 19, n. 4, p. 309–316. doi: http://dx.doi.org/10.1590/1807-1929/agriambi.v19n4p309-316.

Balbino, L. C.; Cordeiro, L. A. M.; Porfírio-Da-Silva, V.; Moraes, A.; Martínez, G. B.; Alvarenga, R. C.; Kichel, A. N.; Fontaneli, R. S.; Santos, H. P.; Franchini, J. C.; Galerani, P. R. (2011). Evolução tecnológica e arranjos produtivos de sistemas de integração lavoura-pecuária-floresta no Brasil. Pesquisa Agropecuária Brasileira, v. 46, n. 10, p. 1-12. doi: https://doi.org/10.1590/S0100-204X2011001000001.

Balbino, L. C.; Barcellos, A. O.; Stone, L. F. (2011). Marco Referencial: integração lavoura-pecuária floresta. Brasília: Embrapa. 130 p.

Bendahan, A. B.; Poccard-Chapuis, R.; Medeiros, R. D.; Costa, N. L.; Tourrand, J. F. (2018). Management and labour in an integrated crop-livestock-forestry system in Roraima, Brazilian Amazonia. Cahiers Agricultures, v. 27, n. 2, p. 25005. doi: https://doi.org/10.1051/cagri/2018014.

Bieluczyk, W.; Piccolo, M. C.; Pereira, M. G.; Moraes, M. T.; Soltangheisi, A.; Bernardi, A. C. C.; Pezzopane, J. R. M.; Oliveira, P. P. A.; Moreira, M. Z.; Camargo, P. B.; Dias, C. T. S.; Batista, I.; Cherbin, M. R. (2020). Integrated farming systems influence soil organic matter dynamics in southeastern Brazil. Geoderma, v. 371, p. 114368. doi: https://doi.org/10.1016/j.geoderma.2020.114368.

BRASIL. Lei nº 12.187, de 29 de dezembro de 2009 (2009). Institui a Política Nacional sobre Mudança do Clima - PNMC e dá outras providências. Disponível em: https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2009/lei/l12187.html. Acesso em: 27 out. 2020.

BRASIL. Lei nº 12.805, de 29 de abril de 2013 (2013). Institui a Política Nacional de Integração Lavoura-Pecuária-Floresta e altera a Lei nº 8.171, de 17 de janeiro de 1991. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2013/lei/l12805.html. Acesso em: 18 out. 2020.

Brewer, K. M.; Gaudin, A. C. M. (2020). Potential of crop-livestock integration to enhance carbon sequestration and agroecosystem functioning in semi-arid croplands. Soil Biology and Biochemistry, v. 149, p. 107936. doi: https://doi.org/10.1016/j.soilbio.2020.107936.

Borges, W. L. B.; Calonego, J. C.; Rosolem, C. A. (2019). Impact of crop-livestock-forest integration on soil quality. Agroforestry systems, v. 93, n. 6, p. 2111-2119. doi: https://doi.org/10.1007/s10457-018-0329-0.

Buller, L. S.; Bergier, I.; Ortega, E.; Moraes, A.; Bayma-Silva, G.; Zanetti, M. R. (2015). Soil improvement and mitigation of greenhouse gas emissions for integrated crop–livestock systems: Case study assessment in the Pantanal savanna highland, Brazil. Agricultural Systems, v. 137, p. 206–219. doi: http://dx.doi.org/10.1016/j.agsy.2014.11.004.

Carrer, M. J.; Maia, A. G.; Vinholis, M. M. B. Souza Filho, H. M. (2020). Assessing the effectiveness of rural credit policy on the adoption of integrated crop-livestock systems in Brazil. Land Use Policy, v. 922, p. 104468. doi: https://doi.org/10.1016/j.landusepol.2020.104468.

Carvalho, P. C. F.; Peterson, C. A.; Nunes, P. A. A.; Martins, A. P.; Souza Filho, W.; Bertolazi, V. T.; Kunrath, T. R.; Moraes, A.; Anghinoni, I. (2018). Animal production and soil characteristics from integrated crop-livestock systems: toward sustainable intensification. Journal of Animal Science, v. 28;96, n. 8, p. 3513-3525. doi: http://dx.doi.org/10.1093/jas/sky085.

Carvalho, P.; Domiciano, L. F.; Mombach, M. A.; Nascimento, H. L. B.; Cabral, L. S.; Sollenberger, L. E.; Pereira, D. H.; Pedreira, B. C. (2019). Forage and animal production on palisadegrass pastures growing in monoculture or as a component of integrated crop–livestock–forestry systems. Grass and Forage Science, v. 74, p. 650–660. doi: http://dx.doi.org/10.1111/gfs.12448.

Cerri, C. C.; Moreira, C. S.; Alves, P. A.; Raucci, G. S.; Castigioni, B. A.; Mello, F. F. C.; Cerri, D. G. P.; Cerri, C. E. P. (2016). Assessing the carbon footprint of beef cattle in Brazil: a case study with 22 farms in the state of Mato Grosso. Journal of Cleaner Production, v. 112, n. 4, p. 2593-2600. doi: https://doi.org/10.1016/j.jclepro.2015.10.072.

Cortner, O.; Garrett, R. D.; Valentim, J. F.; Ferreira, J.; Niles, M. T.; Reis, J.; Gil, J. (2019). Perceptions of integrated crop-livestock systems for sustainable intensification in the Brazilian Amazon. Land Use Policy, v. 82, p. 841-853. doi: https://doi.org/10.1016/j.landusepol.2019.01.006.

Costa, M. P.; Schoeneboom, J. C.; Oliveira, S. A.; Viñas, R. S.; Medeiros, G. A. (2018). A socio-eco-efficiency analysis of integrated and non-integrated crop-livestock-forestry systems in the Brazilian Cerrado based on LCA. Journal of Cleaner Production, v. 171, p. 1460e1471. doi: https://doi.org/10.1016/j.jclepro.2017.10.063.

Denardin, L. G. O.; Martins, A. P.; Carmona, F. C.; Veloso, M. G.; Carmona, G. I.; Carvalho, P. C. F.; Anghinoni, I. (2020a). Integrated crop‐livestock systems in paddy fields: New strategies for flooded rice nutrition. Agronomy Journal, v. 112, p. 2219– 2229. doi: https://doi.org/10.1002/agj2.20148.

Denardin, L. G. O.; Martins, A. P.; Bastos, L. M.; Ciampitti, I. A; Anghinoni, I.; Moojen, F. G.; Carvalho, P. C. F.; Huang, M.; Chabbi, A. (2020b). Soybean yield does not rely on mineral fertilizer in rotation with flooded rice under a no-till integrated crop-livestock system. Agronomy, v. 10, n. 9, p. 1371, 2020b. doi: https://doi.org/10.3390/agronomy10091371.

Dong, S.; Shang, Z.; Gao, J.; Boone, R. B. (2019). Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agriculture, Ecosystems and Environment, v. 287, p. 106684. doi: https://doi.org/10.1016/j.agee.2019.106684.

Figueiredo, E. B.; Jayasundara, S.; Bordonal, R. O.; Berchielli, T. T.; Reis, R. A.; Wagner-Riddle, C.; Scala Júnior, N. L. (2016). Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. Journal of Cleaner Production, v. 142, n. 1, p. 420-431. doi: https://doi.org/10.1016/j.jclepro.2016.03.132.

Galindo, F. S.; Delate, K.; Heins, B.; Phillips, H.; Smith, A.; Pagliari, P. H. (2020). Cropping system and rotational grazing effects on soil fertility and enzymatic activity in an integrated organic crop-livestock system. Agronomy, v. 10, n. 6, p. 803. doi: https://doi.org/10.3390/agronomy10060803.

Garrett, R. D.; Ryschawy, J.; Bell, L. W.; Cortner, O.; Ferreira, J.; Garik, A. V. N.; Gil, J. D. B.; Klerkx, L.; Moraine, M.; Peterson, C. A.; Reis, J. C.; Valentim, J. F. (2020). Drivers of decoupling and recoupling of crop and livestock systems at farm and territorial scales. Ecology and Society, v. 25, n. 1, p .24. doi: https://doi.org/10.5751/ES-11412-250124.

Garrett, R. D.; Gil, J. D. B.; Valentim, F. V. (2019). Transferência de tecnologia: Desafios e oportunidades para adoção de ILPF na Amazônia Brasileira Legal. In: Bungenstab, D. J.; Almeida, R. G.; Laura, V. A.; Balbino, L. C; Ferreira, A. D. (eds.). (2019). ILPF: inovação com integração de lavoura, pecuária e floresta. Brasília: Embrapa. p. 599-616.

Garrett, R. D.; Koh, I.; Lambin, E. F.; Waroux, Y. L. P.; Kastens, J. H.; Brown J. C. (2018). Intensification in agriculture-forest frontiers: Land use responses to development and conservation policies in Brazil. Global Environmental Change, v. 53, p. 233-243. doi: https://doi.org/10.1016/j.gloenvcha.2018.09.011.

Garrett, R. D.; Niles, M. T.; Gil, J. D. B.; Gaudin, A.; Chaplin-Kramer, R.; Assmann, A.; Assmann, T. S.; Brewer, K.; Faccio Carvalho, P. C. De; Cortner, O.; Dynes, R.; Garbach, K.; Kebreab, E.; Mueller, N.; Peterson, C.; Reis, J. C.; Snow, V.; Valentim, J. (2017). Social and ecological analysis of commercial integrated crop livestock systems: Current knowledge and remaining uncertainty. Agricultural Systems, v. 155, p. 136–146. doi: http://dx.doi.org/10.1016/j.agsy.2017.05.003.

Gil, J.; Siebold, M.; Berger, T. (2015). Adoption and development of integrated crop–livestock–forestry systems in Mato Grosso, Brazil. Agriculture, Ecosystems & Environment, v. 199, p. 394-406. doi: https://doi.org/10.1016/j.agee.2014.10.008.

Grahmann, K.; Dellepiane, V. R.; Terra, J. A.; Quincke, J. A. (2020). Long-term observations in contrasting crop-pasture rotations over half a century: Statistical analysis of chemical soil properties and implications for soil sampling frequency. Agriculture, Ecosystems & Environment, v. 287, p. 106710. doi: https://doi.org/10.1016/j.agee.2019.106710.

Hendrickson, J. R. (2020). Crop-livestock integrated systems for more sustainable agricultural production: a review. CAB Reviews, v. 15, n. 12, p. 1-11. doi: https://doi.org/10.1079/PAVSNNR202015012.

King, A. E.; Hofmockela, K. S. (2017). Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen. Agriculture, Ecosystems and Environment, v. 240, p. 66–76. doi: http://dx.doi.org/10.1016/j.agee.2017.01.040.

LAPIG. Laboratório de Processamento de Imagens e Geoprocessamento. Atlas das pastagens brasileiras – 2018. Disponível em: https://www.lapig.iesa.ufg.br/lapig/. Acesso em: 18 out. 2020.

Levinski-Huf, F.; Klein, V. A. (2018). Organic matter and physical properties of a Red Latosol under an integrated crop-livestock-forestry system. Pesquisa Agropecuária Tropical, v. 48, n. 3, p. 316-322. doi: https://doi.org/10.1590/1983-40632018v4852737.

Magalhães, C. A. S.; Zolin, C. A.; Lulu, J.; Lopes, L. B.; Furtini, I. V.; Vendrusculo, L. G.; Zaiatz, A. P. S. R.; Pedreira, B. C.; Pezzopane, J. R. M. (2020). Improvement of thermal comfort indices in agroforestry systems in the southern Brazilian Amazon. Journal of Thermal Biology, v. 91, p. 102636. doi: https://doi.org/10.1016/j.jtherbio.2020.102636.

Marques, R. F.; Marchi, S. R.; Pinheiro, G. H. R.; Araújo, P. P. S.; Souza, R. M. (2020). Effect of eucalyptus proximity and weed presence on soybean grown in a CFI system. Científica, v. 48, n. 1, p. 41-48. doi: http://dx.doi.org/10.15361/1984-5529.2020v48n1p41-48.

MAPA. Ministério da Agricultura, Pecuária e Abastecimento. (2012). Plano setorial de mitigação e de adaptação às mudanças climáticas para a consolidação de uma economia de baixa emissão de carbono na agricultura: Plano ABC (Agricultura de Baixa Emissão de Carbono). Brasília: MAPA/ACS.

MAPA. Ministério da Agricultura, Pecuária e Abastecimento. Resumo da adoção e mitigação de gases de efeitos estufa pelas tecnologias do Plano ABC - Período 2010 a 2018. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/plano-abc/plano-abc-em-numeros. Acesso em: 22 out. 2020.

Moraes, A.; Carvalho, P. C. F.; Anghinoni, I.; Lustosa, S. B. C.; Costa, S. E. V.; Kunrath, T. R. (2014a). Integrated crop–livestock systems in the brazilian subtropics. European Journal of Agronomy, v. 57, p. 4–9. doi: http://dx.doi.org/10.1016/j.eja.2013.10.004.

Moraes, A.; Carvalho, P. C. F.; Lustosa, S. B. C.; Lang, C. R.; Deiss, L. (2014b). Research on integrated crop-livestock systems in Brazil. Revista Ciência Agronômica, v. 45 (5spe), p. 1024-1031. doi: http://dx.doi.org/10.1590/S1806-66902014000500018.

Muradian, R.; Corbera, E.; Pascual, U.; Kosoy, N.; May, P. H. (2010). Reconciling theory and practice: An alternative conceptual framework for understanding payments for environmental services. Ecological Economics, v. 69, p. 1202–1208. doi: http://dx.doi.org/10.1016/j.ecolecon.2009.11.006.

Nie, Z.; Mclean, T.; C., A.; Tocker, J.; Christy, B.; Harris, R.; Riffkin, P.; Clark, S.; Mccaskill, M. (2016). Benefits, challenges and opportunities of integrated crop-livestock systems and their potential application in the high rainfall zone of southern Australia: A review. Agriculture, Ecosystems & Environment, v. 235, p. 17-31. doi: https://doi.org/10.1016/j.agee.2016.10.002.

Piano, J. T.; Rego, C. A. R. M.; Vengen, A. P.; Egewarth, J. F.; Egewarth, V. A.; Mattei, E.; Oliveira, P. S. R.; Herrera, J. L. (2020). Soil organic matter fractions and carbon management index under integrated crop-livestock system. Bioscience Journal, v. 36, n. 3, p. 743-760. doi: https://doi.org/10.14393/BJ-v36n3a2020-47702.

Pontes, L. S.; Barro, R. S.; Savian, J. V.; Berdnt, A.; Moletta, L.; Porfírio-Da-Silva, V.; Bayer, C.; Carvalho, P. C. F. (2018). Performance and methane emissions by beef heifer grazing in temperate pastures and in integrated crop-livestock systems: The effect of shade and nitrogen fertilization. Agriculture, Ecosystems & Environment, v .253, p. 90-97. doi: https://doi.org/10.1016/j.agee.2017.11.009.

Pretty, J.; Benton, T. G.; Bharucha, Z. P.; Dicks, L. V.; Flora, C. B.; Godfray, H. C. J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; Gary, P.; Prasad, P. V. V.; Reganold, J.; Rockström, J.; Smith, P.; Thorne, P. E Wratten, S. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, v. 1, p. 441–446. doi: https://doi.org/10.1038/s41893-018-0114-0.

REDE ILPF. O que é a rede. Disponível em: https://www.redeilpf.org.br/index.php/rede-ilpf/o-que-e-a-rede-ilpf. Acesso em: 03 nov. 2020.

Reis, J. C.; Kamoi, M. Y. T.; Latorraca, D.; Chen, R. F. F.; Michetti, M.; Wruck, F. J.; Garrett, R. D.; Valentim, J. F.; Rodrigues, R. A. R.; Rodrigues Filho, S. (2019). Assessing the economic viability of integrated crop−livestock systems in Mato Grosso, Brazil. Renewable Agriculture and Food Systems, p. 1–12. doi: https://doi.org/10.1017/S1742170519000280.

Reis, J. C.; Rodrigues, G. S.; Barros, I.; Rodrigues, R. A. R.; Garrett, R. D.; Valentim, J. F.; Kamoi, M. Y. T.; Michetti, M.; Wruck, F. J.; Rodrigues Filho, S.; Pimental, P. E.; Smukler, S. (2020). Integrated crop-livestock systems: A sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. Journal of Cleaner Production, p. 124580. doi: https://doi.org/10.1016/j.jclepro.2020.124580.

Ribeiro, R. H.; Ibarr, M. A.; Besen, M. R.; Bayer, C.; Piva, J. T. (2019). Managing grazing intensity to reduce the global warming potential in integrated crop–livestock systems under no‐till agriculture. European Journal of Soil Science, v. 71, p. 1120–1131. doi: https://doi.org/10.1111/ejss.12904.

Ryschawy, J.; Moraine, M.; Péquignot, M.; Martin, G. (2019). Trade-offs among individual and collective performances related to crop–livestock integration among farms: a case study in southwestern France. Organic Agriculture, p. 18. doi: https://doi.org/10.1007/s13165-018-0237-7.

Rocha, K. F.; Kuramae, E. E.; Borges, B. M. F.; Leite, M. F. A.; Rosolem, C. A. (2020). Microbial N-cycling gene abundance is affected by cover crop specie and development stage in an integrated cropping system. Archives of Microbiology, v. 202, p. 2005–2012. doi: https://doi.org/10.1007/s00203-020-01910-2.

Santos, C. B.; Costa, K. A. P.; Souza, W. F.; Silva, A. G. (2020). Intercropping of sorghum with paiaguas palisadegrass in a crop-livestock integration system for pasture recovery. Australian Journal of Crop Science, v.14, n.7, p.1072-1080. doi: https://doi.org/10.21475/ajcs.20.14.07.p2216

Sarto, M. V. M.; Borges, W. L. B.; Sarto, J. R. W.; Rice, C. W.; Rosolem, C. A. (2020a). Deep soil carbon stock, origin, and root interaction in a tropical integrated crop–livestock system. Agroforestry Systems, v. 94, p. 1865–1877. doi: https://doi.org/10.1007/s10457-020-00505-6.

Sarto, M. V. M.; Borges, W. L. B.; Sarto, J. R. W.; Pires, C. A. B.; Rice, C. W.; Rosolem, C. A. (2020b). Soil microbial community and activity in a tropical integrated crop-livestock system. Applied Soil Ecology, v. 145, p. 103350. doi: https://doi.org/10.1016/j.apsoil.2019.08.012.

Sekaran, U.; Kumar, S.; Gonzalez-Hernandez, J. L. (2020). Integration of crop and livestock enhanced soil biochemical properties and microbial community structure. Geoderma, v. 381, p. 114686, 2020. doi: https://doi.org/10.1016/j.geoderma.2020.114686.

Silva, J. C. N.; Silva, A. R.; Veloso, C. A. C.; Dantas, E. F.; Sacramento, J. A. A. S. (2018). Aggregation, carbon, and total soil nitrogen in crop-livestock-forest integration in the Eastern Amazon. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 22, n. 12, p. 837-842. doi: https://doi.org/10.1590/1807-1929/agriambi.v22n12p837-842.

Silva, J. T.; Costa, K. A. P.; Silva, V. C.; Souza, W. F.; Teixeira, D. A. A.; Severiano, E. C. (2020). Morphogenesis, structure, and dynamics of paiaguas palisadegrass tillering after intercroping with sorghum for the recovery of pasture in different forage systems. Bioscience Journal, v. 36, n. 5, p. 1663-1675. doi: http://dx.doi.org/10.14393/BJ-v36n5a2020-47747.

Terefe, H.; Argaw, M.; Tamene, L.; Mekonnen, K.; Recha, J.; Solom, D. (2020). Effects of sustainable land management interventions on selected soil properties in Geda watershed, central highlands of Ethiopia. Ecological Processes, v. 9, n. 14. doi: https://doi.org/10.1186/s13717-020-0216-2.

Vinholis, M. M. B., Saes, M. S. M.; Carrer, M. J.; Souza Filho, H. M. (2021). The effect of meso-institutions on adoption of sustainable agricultural technology: A case study of the Brazilian Low Carbon Agriculture Plan. Journal of Cleaner Production, v. 280, p. 124334. doi: https://doi.org/10.1016/j.jclepro.2020.124334.

Wachter, J. M.; Painter, K. M.; Carpenter-Boggs, L. A.; Huggins, D. R.; Reganold, J. P. (2019). Productivity, economic performance, and soil quality of conventional, mixed, and organic dryland farming systems in eastern Washington State. Agriculture, Ecosystems & Environment, v. 286, p. 106665. doi: https://doi.org/10.1016/j.agee.2019.106665.

Walkup, J.; Freedman, Z.; Kotcon, J.; Morrissey, E. M. (2020). Pasture in crop rotations influences microbial biodiversity and function reducing the potential for nitrogen loss from compost. Agriculture, Ecosystems & Environment, v. 304, p. 107122. doi: https://doi.org/10.1016/j.agee.2020.107122.

Wiesner, S.; Duff, A. J.; Desai, A. R.; Panke-Buisse, K. (2020). Increasing dairy sustainability with integrated crop–livestock farming. Sustainability, v. 12, n. 3, p. 765. doi: https://doi.org/10.3390/su12030765.

Wruck, F. J.; Behling, M.; Lange, A. (2019). Produção da lavoura em sistemas de ILPF. In: BUNGENSTAB, D. J.; Almeida, R. G.; Laura, V. A.; Balbino, L. C.; Ferreira, A. D. (eds.). (2019). ILPF: inovação com integração de lavoura, pecuária e floresta. Brasília: Embrapa. p. 599-616.

Wunder, S.; Börner, J.; Ezzine-De-Blas, D.; Feder, S.; Pagiola, S. (2020). Payments for environmental services: past performance and pending potentials. Annual Review of Resource Economics, v. 12, p. 209-234. doi: https://doi.org/10.1146/annurev-resource-100518-094206.

Zago, L. M. S. M. S.; Ramalho, W. P.; Caramori, S. (2019). Does Crop-Livestock-Forest Systems contribute to soil quality in Brazilian Savannas?. Floresta e Ambiente, v. 26, n. 3, p. e20180343. doi: http://dx.doi.org/10.1590/2179-8087.034318.

Descargas

Publicado

2024-08-15