Understanding of derivative concepts by undergraduate mathematics students from three inland institutions in the state of Paraná

Authors

DOI:

https://doi.org/10.23925/1983-3156.2025v27i1p336-384

Keywords:

Instrumental understanding, Relational understanding, Logical understanding, Initial formation of the teacher, Derivatives

Abstract

Learning mathematics is intrinsically related to understanding, i. e. the apprehension and elaboration of meanings concerning mathematical objects, without neglecting their applications. Several official Brazilian documents emphasize that the focus on understanding should permeate the “initial and continuing training” of teachers or educators, indicating that training should have studies and practices on the subject on its agenda. This led us to ask: “What is the understanding of the concepts of derivative of a variable among mathematics undergraduate students at universities in western Paraná?” The subjects investigated come from three university campuses in the interior of Paraná. Richard Skemp's theoretical framework was used to produce the evaluations and study the research data. Analytical tables were drawn up based on the answers to the questionnaires and individual interviews. The analysis showed, according to established criteria, failures and shortcomings in the understanding of these concepts, indicating strong signs of non-lasting learning.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Jorge Fernandes de Lima Neto, UFAM

He holds a degree in Mathematics from the Federal University of Amazonas (1998), a master's degree in Mathematics from the Federal University of Ceará (2000) and a PhD in Mathematics from the University of Brasília (2005). He is currently a professor at the Federal University of Amazonas. He has experience in the area of ​​Mathematics, with an emphasis on Number Theory.

Tiago Emanuel Klüber, Unioeste

Graduated in Mathematics and specialist in Teaching in Higher Education from the State University of the Center-West - UNICENTRO. Master in Education from the State University of Ponta Grossa - UEPG and PhD in Scientific and Technological Education (2012) from the Federal University of Santa Catarina - UFSC. Research in the areas of Education and Teaching, with an emphasis on Mathematics Education, working mainly on the following themes: Mathematical Modeling, Teacher Training, Epistemology and philosophy of Mathematics Education. Professor at the Center for Exact and Technological Sciences, CCET, at Unioeste, Campus Cascavel. He was coordinator of the Postgraduate Program in Science Education and Mathematics Education at Unioeste (PPGECEM), master's and doctorate level, CAPES, concept 4, (2017-2021), Cascavel campus, where he is currently a permanent professor, guiding research at master's and doctoral level. He was deputy coordinator of GT-10 Mathematical Modeling (2012-2015 and 2015-2018), of the Brazilian Society of Mathematics Education, SBEM. President of the Society for Qualitative Studies and Research, SEPQ (2023-2027).

References

AMS. (2022). Deborah Hughes Hallett receives: Award for Impact on the Teaching and Learning of Mathematics. American Mathematical Society: News from AMS. https://www.ams.org/news?news_id=6840.

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., ... Wittrock, M. C. (2001). A Taxonomy for Learning, Teaching, and Assessing: A revision of Bloom’s Taxonomy of Edcatoins Objectives. New York: Longman.

Ávila, G. S. S. (2011). Cálculo: das funções de uma variável. (7a ed., vol. 1). Rio de Janeiro: LTC.

Barufi, M. C. B. (1999). A construção/negociação de significados no curso universitário inicial de Cálculo Diferencial e Integral [Tese de Doutorado]. Universidade de São Paulo – USP. https://doi.org/10.11606/T.48.1999.tde-06022004-105356

Bloom, B. S. et al. (1956) Taxonomy of Educacional Objectives: The Classification of Educational Goals (v. 1). New York: Longmans, Green.

Boulos, P. (2019). Introdução ao Cálculo Diferencial (2. ed., v. 1). São Paulo: Blucher. https://app.minhabiblioteca.com.br/#/books/9788521217534/.

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of Educacional Objectives: The Classification of Educational Goals (Vol. 1). New York, USA: Longmans, Green. https://archive.org/embed/bloometaltaxonomyofeducationalobjectives

Brasil. (1998). Parâmetros Curriculares Nacionais (5ª a 8ª séries): Matemática. Brasília: MEC / Secretaria de Educação Fundamental.

Brasil. (2000). Parâmetros curriculares nacionais (ensino médio): Parte III - Ciências da Natureza, Matemática e suas Tecnologias. Brasília: MEC.

Brasil. (2001). Diretrizes Curriculares para os cursos de Matemática. Brasília: MEC / Conselho Nacional de Educação.

Brasil. (2003). Estabelece as diretrizes curriculares para os cursos de Matemática. Brasília: MEC / Conselho Nacional de Educação.

Brasil. (2006). PCN+: Ciências da Natureza e Matemática e suas tecnologias. Brasília: MEC / Secretaria de Educação Fundamental.

Brasil. (2018). Base Nacional Comum Curricular. MEC.

Brasil. (2022). Censo da Educação Superior 2021: divulgação dos dados. Brasília: MEC / INEP. Acesso em 04 dez. 2022, disponível em https://download.inep.gov.br/educacao_superior/ censo_superior/documentos/2021/apresentacao_censo_da_educacao_superior_2021.pdf

Douglas, R. G. (2-6 jan. 1986). Toward a Lean and Lively Calculus. Conference/workshop to Develop Curriculum and Teaching Methods for Calculus at the College Levels. MAA notes and report series. n. 6.

Grabiner, J. V. (1983). The Changing Concept of Change: The Derivative from Fermat to Weierstrass. Mathematics Magazine, 56(4), 195–206. https://doi.org/10.1080/0025570X.1983.11977043.

Grabiner, J. V. (2005). The origins of Cauchy's rigorous calculus. Dover Publications.

Guidorizzi, L. H. (2001). Um Curso de Cálculo (5a ed., Vol. 1). LTC. https://bookshelf.vitalsource.com/#/books/9788521622444.

Guidorizzi, L. H. (2018). Um Curso de Cálculo (6a ed., Vol. 1). LTC. https://app.minhabiblioteca.com.br/#/books/9788521635574/

Hilbert, D. (1902). Mathematical problems. Bulletin of the American Mathematical Society, 8(10), 437-479. https://doi.org/10.1090/S0002-9904-1902-00923-3

Hughes-Hallett, D. (2024). Faculty Profile. https://www.hks.harvard.edu/faculty/deborah-hughes-hallett

Hughes-Hallett, D., Gleason, A. M., Flath, D. E., Gordon, D, Osgood, B.G., McCallum, Quinney, D., Mumford, D., Raskind, W., Tscoky-Feldman, J., Thrash, J. B. & Tucker, T. W. (1997). Cálculo (1. ed. Vol. 1). LTC.

Hughes-Hallett, D., Gleason, A. M., McCallum, W. G., Quinney, D., Lock, P. F., Osgood, B. G., Flath, D. E., Pasquale, A., Gordon, S. P., Lomen, D. O., Tecosky-Feldman, J., Thrash, J. B., Lovelock, D., Thrash, K. R. & Tucker, T. W. (1999). Cálculo e aplicações (1. ed., vol. 1). Blucher. E-book. https://plataforma.bvirtual.com.br.

Hughes-Hallett, D., Gleason, A. M., McCallum, W. G., Pasquale, A. Flath, D. E., Quinney, D., Lock, P. F., Raskind, W., Gordon. S. P., Rhea, K., Lomen, D. O., Tscoky-Feldman, J., Lovelock, D, Thrash, J. B., Osgood, B.G., & Tucker, T. W. (2013). Cálculo de uma Variável (3 ed., Vol. 1). LTC.

Keene, A. K., Glass, M., Kin. J. H. (2011). Identifying and Assessing Relational Understanding in Ordinary Differential Equations. Proceedings – Frontiers in Education Conference. Oct. 12-15. https://doi.org/10.1109/FIE.2011.6143074

Klein, D., Rosen, J. (oct. 1997). Calculus Reform - For the $Millions. Notices of the AMS, 44(10), 1324-1325. https://www.ams.org/notices/199710/comm-klein.pdf

Knill, O. (2004). On the Harvard Consortium Calculus. https://people.math.harvard.edu/~knill/pedagogy/harvardcalculus/

Lei nº 9.394, de 20 de dezembro de 1996. (1996). Estabelece as diretrizes e bases da educação nacional. https://www.planalto.gov.br/ccivil_03/Leis/L9394.htm

Leithold, L. (1994) O cálculo com geometria analítica. (3 ed., Vol. 1). Harbra.

Liu, P.-H., Lin, C.-C., Chen, T.-S., Chung, Y.-T., Liao, C.-H., Lin, P.-C., Tseng, H,-E & Chen, R.-M. (2009). A Collaborative Model for Calculus Reform—A Preliminary Report. Proceedings of the tenth International Conference Models in Developing Mathematics Education (pp. 372-375). https://www.researchgate.net/publication/255657280_A_Collaborative_Model_for_Calculus_Reform-A_Preliminary_Report

Mac Lane, S. (sep. 1997). On the Harvard Consortium Calculus. Letters to the Editor, 44(8), 893. https://www.ams.org/notices/199708/letters.pdf

Mumford, D. (1997). Calculus reform—for the millions. Notices of the AMS, 44(5), 559-563. https://www.ams.org/notices/199705/comm-mumford.pdf

Pinheiro, G. D. (2022). Sala de aula invertida no ensino de cálculo diferencial e integral I em cursos de engenharia: Uma proposta experienciada [Disertação de Mestrado]. Universidade Estadual do Oeste do Paraná.

Pinheiro, G. D., Boscarioli, C. (2022). Metodologias ativas e o ensino de cálculo diferencial e Integral I em cursos de engenharia – Uma revisão de literatura. Revista de Ensino de Engenharia, 41, 140-153. http://revista.educacao.ws/revista/index.php/abenge/article/view/1952

Polya, G. (1995). A arte de resolver Problemas: Um novo aspecto do método matemático. Interciência.

Pozo, J. I. (2002). Aprendizes e mestres: a nova cultura da aprendizagem. Artmed.

Rezende, W. M. (2003). O ensino de cálculo: dificuldades de natureza epistemológica [Tese de Doutorado]. Universidade de São Paulo. https://doi.org/10.11606/T.48.2003.tde-27022014-121106

Skemp, R. R. (1976) Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.

Skemp, R. R. (1987). The Psychology of Learning Mathematics. Lawrence Erlbaum Associates Publishers.

Smoryński, C. (2017). MVT: A Most Valuable Theorem. Springer. https://doi.org/10.1007/978-3-319-52956-1

Stewart, J. D. (2006). Cálculo (5 ed., vol. 1). São Paulo: Pioneira Thomson Learning.

Stewart, J. D. (2013). Cálculo (7 ed., vol. 1). São Paulo: Cenage Learning.

Swokowski, E. W. (1995) Cálculo com geometria analítica. (2. ed., v.1) São Pauulo: Makron Books.

Torres, T. I. M. & Giraffa, L. M. M. (2009). O Ensino do Cálculo numa perspectiva histórica: Da régua de calcular ao MOODLE. Revista eletrônica de Eduação Matemática, 4(1), 18-25. https://doi.org/10.5007/1981-1322.2009v4n1p18

Trevisan, A. L. & Mendes, M. T. (2018). Ambientes de ensino e aprendizagem de Cálculo Diferencial e Integral organizados a partir de episódios de resolução de tarefas: uma proposta. Revista Brasileira de Ensino de Ciência e Tecnologia, 11(1), 209-227. https://doi.org/10.3895/rbect.v11n1.5702

Weber, Keith. (2002) The role of instrumental and relational understanding in proofs about group isomorphisms. 2nd International Conference on the Teaching of Mathematics at the undergraduate level. http://users.math.uoc.gr/~ictm2/ICTM2Proceedings.zip.

Wilson, R. (1997). "Reform Calculus" Has Been a Disaster, Critics Charge. The Chronicle of Higher Education. https://www.chronicle.com/article/reform-calculus-has-been-a-disaster-critics-charge/

Wu, H. (1997). The Mathematics Education Reform: Why You Should Be Concerned and What You Can Do. The American Mathematical Monthly, 104(10), 946-954. https://doi.org/10.1080/00029890.1997.11990745

Published

2025-04-30

How to Cite

LIMA NETO, J. F. de; KLÜBER, T. E. Understanding of derivative concepts by undergraduate mathematics students from three inland institutions in the state of Paraná. Educação Matemática Pesquisa, São Paulo, v. 27, n. 1, p. 336–384, 2025. DOI: 10.23925/1983-3156.2025v27i1p336-384. Disponível em: https://revistas-anterior.pucsp.br/index.php/emp/article/view/67010. Acesso em: 24 dec. 2025.