Comprensión de conceptos derivados de la licenciatura en matemáticas estudiantes de tres instituciones del interior del estado de Paraná
DOI:
https://doi.org/10.23925/1983-3156.2025v27i1p336-384Palabras clave:
Comprensión instrumental, Comprensión relacional, Comprensión lógica, Formación inicial del profesorado, DerivadaResumen
El aprendizaje de las matemáticas está intrínsecamente relacionado con la comprensión, es decir, con la aprehensión y elaboración de significados relativos a los objetos matemáticos, sin descuidar sus aplicaciones. Varios documentos oficiales brasileños destacan que el enfoque en la comprensión debe impregnar la "formación inicial y continua" de los profesores o educadores, indicando que la formación debe tener en su agenda estudios y prácticas sobre el tema. Esto nos llevó a preguntarnos: ¿Cuál es la comprensión de los conceptos de derivada de una variable entre los estudiantes de pregrado en Matemáticas de las universidades del oeste de Paraná? Los sujetos investigados provienen de tres campus universitarios del interior de Paraná. Se utilizó el marco teórico de Richard Skemp para elaborar las evaluaciones y estudiar los datos de la investigación. Se elaboraron cuadros analíticos a partir de las respuestas a los cuestionarios y de las entrevistas individuales. De acuerdo con los criterios establecidos, el análisis reveló fallas y deficiencias en la comprensión de estos conceptos, indicando fuertes señales de aprendizaje no duradero.
Descargas
Métricas
Citas
AMS. (2022). Deborah Hughes Hallett receives: Award for Impact on the Teaching and Learning of Mathematics. American Mathematical Society: News from AMS. https://www.ams.org/news?news_id=6840.
Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., ... Wittrock, M. C. (2001). A Taxonomy for Learning, Teaching, and Assessing: A revision of Bloom’s Taxonomy of Edcatoins Objectives. New York: Longman.
Ávila, G. S. S. (2011). Cálculo: das funções de uma variável. (7a ed., vol. 1). Rio de Janeiro: LTC.
Barufi, M. C. B. (1999). A construção/negociação de significados no curso universitário inicial de Cálculo Diferencial e Integral [Tese de Doutorado]. Universidade de São Paulo – USP. https://doi.org/10.11606/T.48.1999.tde-06022004-105356
Bloom, B. S. et al. (1956) Taxonomy of Educacional Objectives: The Classification of Educational Goals (v. 1). New York: Longmans, Green.
Boulos, P. (2019). Introdução ao Cálculo Diferencial (2. ed., v. 1). São Paulo: Blucher. https://app.minhabiblioteca.com.br/#/books/9788521217534/.
Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of Educacional Objectives: The Classification of Educational Goals (Vol. 1). New York, USA: Longmans, Green. https://archive.org/embed/bloometaltaxonomyofeducationalobjectives
Brasil. (1998). Parâmetros Curriculares Nacionais (5ª a 8ª séries): Matemática. Brasília: MEC / Secretaria de Educação Fundamental.
Brasil. (2000). Parâmetros curriculares nacionais (ensino médio): Parte III - Ciências da Natureza, Matemática e suas Tecnologias. Brasília: MEC.
Brasil. (2001). Diretrizes Curriculares para os cursos de Matemática. Brasília: MEC / Conselho Nacional de Educação.
Brasil. (2003). Estabelece as diretrizes curriculares para os cursos de Matemática. Brasília: MEC / Conselho Nacional de Educação.
Brasil. (2006). PCN+: Ciências da Natureza e Matemática e suas tecnologias. Brasília: MEC / Secretaria de Educação Fundamental.
Brasil. (2018). Base Nacional Comum Curricular. MEC.
Brasil. (2022). Censo da Educação Superior 2021: divulgação dos dados. Brasília: MEC / INEP. Acesso em 04 dez. 2022, disponível em https://download.inep.gov.br/educacao_superior/ censo_superior/documentos/2021/apresentacao_censo_da_educacao_superior_2021.pdf
Douglas, R. G. (2-6 jan. 1986). Toward a Lean and Lively Calculus. Conference/workshop to Develop Curriculum and Teaching Methods for Calculus at the College Levels. MAA notes and report series. n. 6.
Grabiner, J. V. (1983). The Changing Concept of Change: The Derivative from Fermat to Weierstrass. Mathematics Magazine, 56(4), 195–206. https://doi.org/10.1080/0025570X.1983.11977043.
Grabiner, J. V. (2005). The origins of Cauchy's rigorous calculus. Dover Publications.
Guidorizzi, L. H. (2001). Um Curso de Cálculo (5a ed., Vol. 1). LTC. https://bookshelf.vitalsource.com/#/books/9788521622444.
Guidorizzi, L. H. (2018). Um Curso de Cálculo (6a ed., Vol. 1). LTC. https://app.minhabiblioteca.com.br/#/books/9788521635574/
Hilbert, D. (1902). Mathematical problems. Bulletin of the American Mathematical Society, 8(10), 437-479. https://doi.org/10.1090/S0002-9904-1902-00923-3
Hughes-Hallett, D. (2024). Faculty Profile. https://www.hks.harvard.edu/faculty/deborah-hughes-hallett
Hughes-Hallett, D., Gleason, A. M., Flath, D. E., Gordon, D, Osgood, B.G., McCallum, Quinney, D., Mumford, D., Raskind, W., Tscoky-Feldman, J., Thrash, J. B. & Tucker, T. W. (1997). Cálculo (1. ed. Vol. 1). LTC.
Hughes-Hallett, D., Gleason, A. M., McCallum, W. G., Quinney, D., Lock, P. F., Osgood, B. G., Flath, D. E., Pasquale, A., Gordon, S. P., Lomen, D. O., Tecosky-Feldman, J., Thrash, J. B., Lovelock, D., Thrash, K. R. & Tucker, T. W. (1999). Cálculo e aplicações (1. ed., vol. 1). Blucher. E-book. https://plataforma.bvirtual.com.br.
Hughes-Hallett, D., Gleason, A. M., McCallum, W. G., Pasquale, A. Flath, D. E., Quinney, D., Lock, P. F., Raskind, W., Gordon. S. P., Rhea, K., Lomen, D. O., Tscoky-Feldman, J., Lovelock, D, Thrash, J. B., Osgood, B.G., & Tucker, T. W. (2013). Cálculo de uma Variável (3 ed., Vol. 1). LTC.
Keene, A. K., Glass, M., Kin. J. H. (2011). Identifying and Assessing Relational Understanding in Ordinary Differential Equations. Proceedings – Frontiers in Education Conference. Oct. 12-15. https://doi.org/10.1109/FIE.2011.6143074
Klein, D., Rosen, J. (oct. 1997). Calculus Reform - For the $Millions. Notices of the AMS, 44(10), 1324-1325. https://www.ams.org/notices/199710/comm-klein.pdf
Knill, O. (2004). On the Harvard Consortium Calculus. https://people.math.harvard.edu/~knill/pedagogy/harvardcalculus/
Lei nº 9.394, de 20 de dezembro de 1996. (1996). Estabelece as diretrizes e bases da educação nacional. https://www.planalto.gov.br/ccivil_03/Leis/L9394.htm
Leithold, L. (1994) O cálculo com geometria analítica. (3 ed., Vol. 1). Harbra.
Liu, P.-H., Lin, C.-C., Chen, T.-S., Chung, Y.-T., Liao, C.-H., Lin, P.-C., Tseng, H,-E & Chen, R.-M. (2009). A Collaborative Model for Calculus Reform—A Preliminary Report. Proceedings of the tenth International Conference Models in Developing Mathematics Education (pp. 372-375). https://www.researchgate.net/publication/255657280_A_Collaborative_Model_for_Calculus_Reform-A_Preliminary_Report
Mac Lane, S. (sep. 1997). On the Harvard Consortium Calculus. Letters to the Editor, 44(8), 893. https://www.ams.org/notices/199708/letters.pdf
Mumford, D. (1997). Calculus reform—for the millions. Notices of the AMS, 44(5), 559-563. https://www.ams.org/notices/199705/comm-mumford.pdf
Pinheiro, G. D. (2022). Sala de aula invertida no ensino de cálculo diferencial e integral I em cursos de engenharia: Uma proposta experienciada [Disertação de Mestrado]. Universidade Estadual do Oeste do Paraná.
Pinheiro, G. D., Boscarioli, C. (2022). Metodologias ativas e o ensino de cálculo diferencial e Integral I em cursos de engenharia – Uma revisão de literatura. Revista de Ensino de Engenharia, 41, 140-153. http://revista.educacao.ws/revista/index.php/abenge/article/view/1952
Polya, G. (1995). A arte de resolver Problemas: Um novo aspecto do método matemático. Interciência.
Pozo, J. I. (2002). Aprendizes e mestres: a nova cultura da aprendizagem. Artmed.
Rezende, W. M. (2003). O ensino de cálculo: dificuldades de natureza epistemológica [Tese de Doutorado]. Universidade de São Paulo. https://doi.org/10.11606/T.48.2003.tde-27022014-121106
Skemp, R. R. (1976) Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.
Skemp, R. R. (1987). The Psychology of Learning Mathematics. Lawrence Erlbaum Associates Publishers.
Smoryński, C. (2017). MVT: A Most Valuable Theorem. Springer. https://doi.org/10.1007/978-3-319-52956-1
Stewart, J. D. (2006). Cálculo (5 ed., vol. 1). São Paulo: Pioneira Thomson Learning.
Stewart, J. D. (2013). Cálculo (7 ed., vol. 1). São Paulo: Cenage Learning.
Swokowski, E. W. (1995) Cálculo com geometria analítica. (2. ed., v.1) São Pauulo: Makron Books.
Torres, T. I. M. & Giraffa, L. M. M. (2009). O Ensino do Cálculo numa perspectiva histórica: Da régua de calcular ao MOODLE. Revista eletrônica de Eduação Matemática, 4(1), 18-25. https://doi.org/10.5007/1981-1322.2009v4n1p18
Trevisan, A. L. & Mendes, M. T. (2018). Ambientes de ensino e aprendizagem de Cálculo Diferencial e Integral organizados a partir de episódios de resolução de tarefas: uma proposta. Revista Brasileira de Ensino de Ciência e Tecnologia, 11(1), 209-227. https://doi.org/10.3895/rbect.v11n1.5702
Weber, Keith. (2002) The role of instrumental and relational understanding in proofs about group isomorphisms. 2nd International Conference on the Teaching of Mathematics at the undergraduate level. http://users.math.uoc.gr/~ictm2/ICTM2Proceedings.zip.
Wilson, R. (1997). "Reform Calculus" Has Been a Disaster, Critics Charge. The Chronicle of Higher Education. https://www.chronicle.com/article/reform-calculus-has-been-a-disaster-critics-charge/
Wu, H. (1997). The Mathematics Education Reform: Why You Should Be Concerned and What You Can Do. The American Mathematical Monthly, 104(10), 946-954. https://doi.org/10.1080/00029890.1997.11990745
Descargas
Publicado
Cómo citar
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).